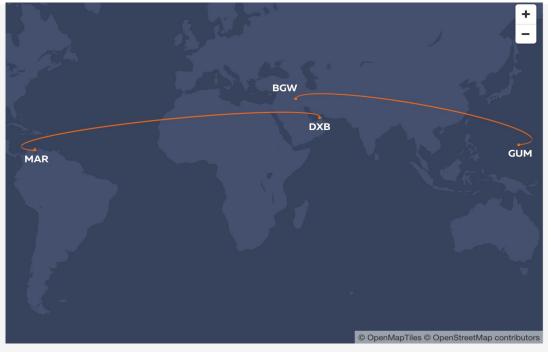


A Look at a Root Cause for DNS Latency


What frustrates Internet users most? Slow DNS

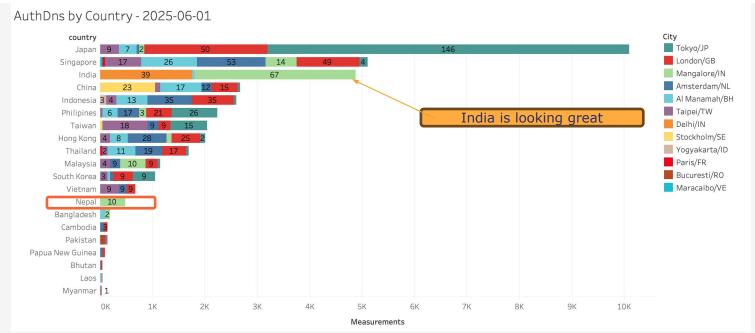
The Problem

What Frustrates Internet Users Most?

High DNS latency
Due to routing, slowing
down experiences

Traffic is not local
Slow response due to
detour around the world

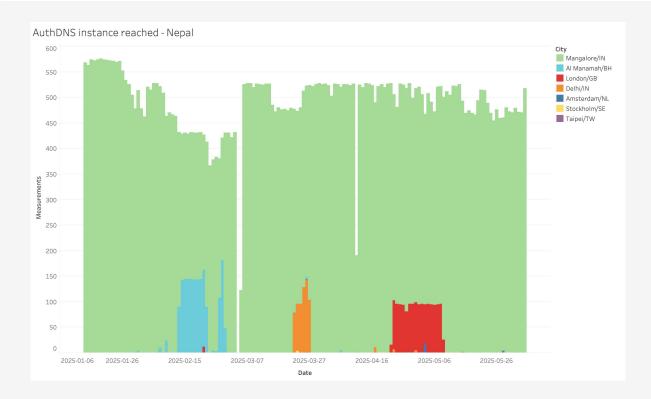
How Is RIPE NCC's AuthDNS Reached from Asia Pacific?


1.	Target: RIPE NCC AuthDNS service
2.	From 1481 probes in Asia Pacific
3.	DNS and NSID measurements
4.	We got replies from 1263 probes
5.	You can do this too!

msm-id	Region	Measurement period		
81884795	PacificAndOceania	2024-11-11 14:01:21 2025-01-10 00:00:00		
81884639	SouthEastAsia	2024-11-11 13:59:19 2025-01-10 00:00:00		
81884620	SouthAsia	2024-11-11 13:59:06 2025-01-10 00:00:00		
81884592	EastAsia	2024-11-11 13:58:46 2025-01-10 00:00:00		
	1460 SouthEastAsia+Oceania 2025-01-12 23:01:41 2025-03-04			
00:00:00 86051450 East-and-South-Asia 2025-01-12 22:58:42 202		2025 01 12 22:58:42 2025 03 04 00:00:00		
https://atlas.ripe.net/measurements/				
ntips.//atias.npe.nevmeasurements/				

Let's Analyse:

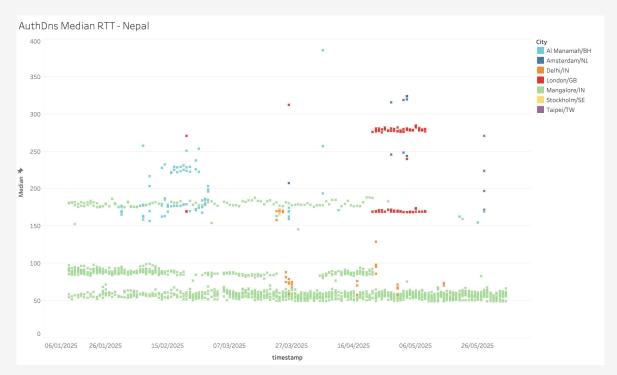
Which node answered DNS queries from certain economies?


World tour

- Nepal: All the probes got answer from RIPE NCC's AuthDNS nodes in India
- We have 2 nodes in Japan, some of the probes still prefer to go to London and Taiwan
- India: 2 local nodes in Delhi and Mangalore 95% of the probes go answer locally

Let's Take a Closer Look

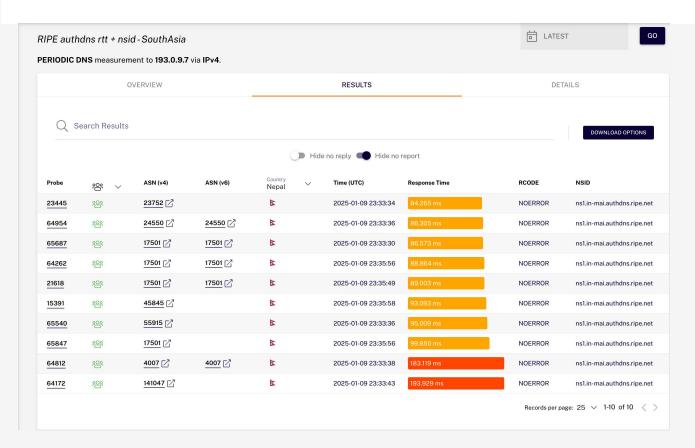
Which node gives the most answers? 01/06/25



Most queries from Nepal probes got answers from node in Mangalore (India), sometimes from the node in New Delhi, Great Britain and Bahrein.

Let's Analyse:

RTT answer from AuthDNS nodes in India and Europe on 01/06/25



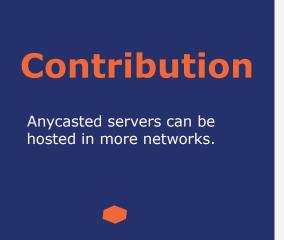
Asia to Europe

- RTTs to Europe generally are in the 150ms-250ms range
- RTTs to Mangalore node is in range of 50-200ms

Let's Zoom in Nepal:

Minimum RTT

 Having a local node will help reduce the latency



The Solution

Keeping Traffic Local with AuthDNS

Anycast Local DNS server reduces latency. More deployment increases resilience.

Security

- Local AuthDNS is a machine that announces the AuthDNS prefixes.
- It helps reduce path lengths for your network and peers.

What is AuthDNS?

RIPE NCC's AuthDNS provides:

- 1. Reverse DNS zones for IP space allocated by RIPE NCC
- 2. Best-effort secondary name service to the other RIRs
- 3. Critical Internet zones (e.g. ripe.net)

Why Host an AuthDNS node?

For IXPs:

- Boost your visibility
- Attract more peers with added value services

For ISPs:

- Reduce dependency: resolve your own reverse DNS internally
- Improve email deliverability for your customers

We make it easy

We manage the server:

- Software updates
- Security patches
- Monitoring health and performance
- Restricted access

Designed with resilience in mind:

- Distributed nodes help mitigate risks from DDoS attacks
- You support a stronger Internet by simply hosting a node

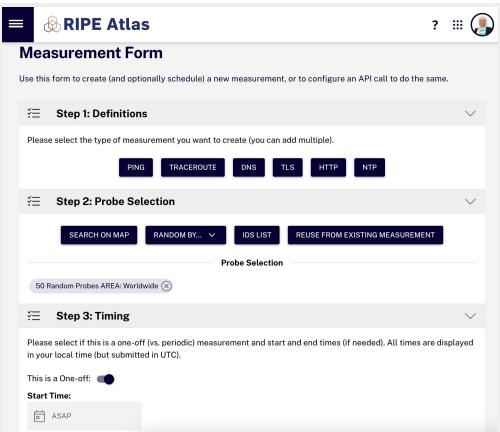
Scan the QR-code to learn more!

Requirements

A host may provide either a dedicated hardware server, or a virtual server

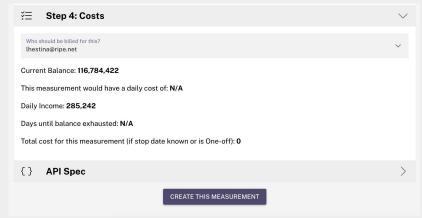
- Min CPUS=8, min RAM=20 GB, min storage=500 GB, 2 gigabit-ethernet network interfaces
- Dell PowerEdge
- iDRAC enterprise, for out-of-band access and OS installation
- Web-based out-of-band access

Hand-On Solution - Be Proactive with RIPE Atlas

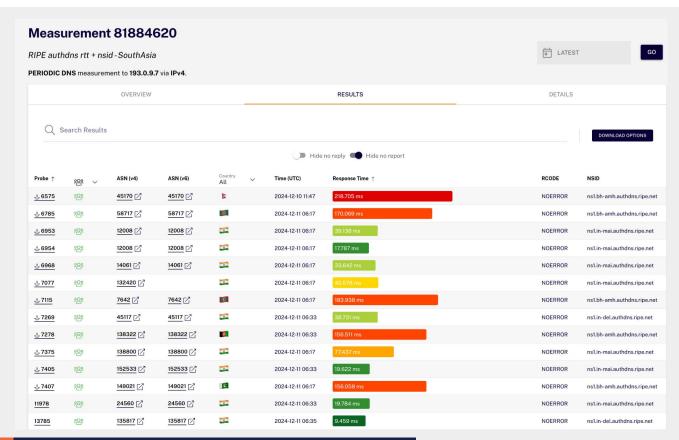


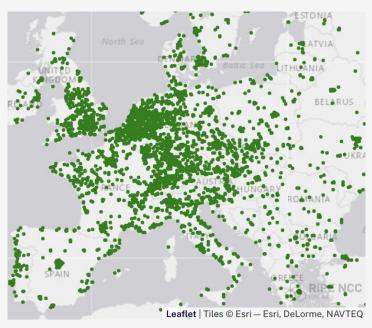
Global network of sensors monitoring Internet paths in real time

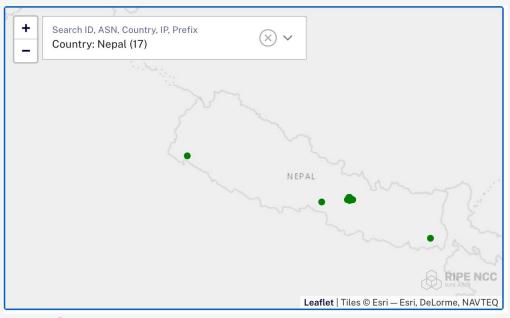
Try It Yourself: Create a Measurement



https://atlas.ripe.net/measurements/form/


- Create a RIPE NCC SSO account
- Redeem 200K credits NPNOG11
- 3. Get started:


Analysing Results



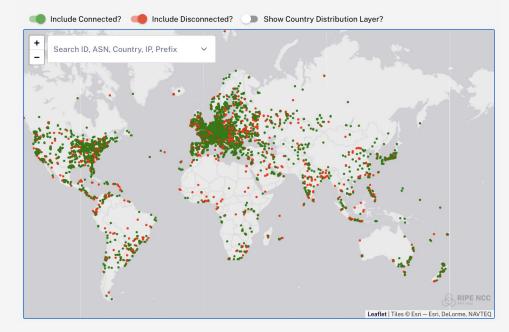
RIPE Atlas Coverage Density

Europe

Nepal

RIPE Atlas in the Asia Pacific region

How you can help


Extremely low coverage in many economies, we need:

- More topological diversity.
 Especially: More diversity in network & type of location:
 - end user vs. core
 - More in eyeball networks
 - Paths via IXPs

Coverage and Statistics

This page contains the RIPE Atlas probe coverage map and various statistics on <u>Global Indicators</u>, <u>measurements</u>, <u>ASN / IP</u> Prefix / Country Coverage, Top ASNs / Prefixes / Countries, probes, users and anchors.

Global RIPE Atlas Network Coverage

Understanding how the internet is routed during Internet outages with RIPE Atlas Anchor

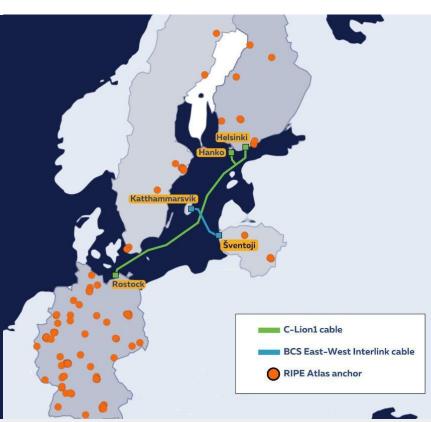
Don't Just Be a Passive Client, Take Charge of Your Visibility

When incidents happen, can you see how your network is affected? RIPE Atlas Anchors give you a global, independent view.

- Detect routing issues faster
- Understand impact from different regions
- Make informed, timely decisions

Preparation is your responsibility. Visibility is your power.

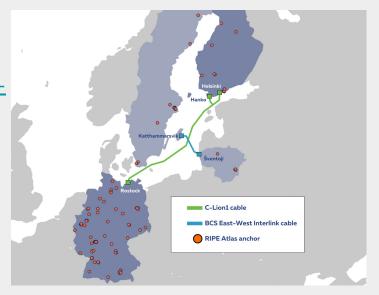
Supporting RIPE NCC Research Reports on Internet events



RIPE NCC research into outages, hijacks, and events that damage the Internet

Recent analysis of **Baltic Sea cable cuts at end of 2024** drawing on data from
RIPE Atlas anchors

Read the full analysis on RIPE Labs



RIPE Atlas Anchors Use Case: Submarine Cable Cuts

Does the Internet route around damage?

- On 16 November a submarine cable got cut, on 17 November another one
- Did the Internet route around this damage?
- We used RIPE Atlas Anchors to investigate:
 - https://labs.ripe.net/author/emileaben/doesthe-internet-route-around-damage-baltic-se a-cable-cuts/
- Findings:
 - No increased packet loss
 - 20-30% of paths had increased latency (0-20ms)

RIPE Atlas Anchor Deployment

Help us deploy RIPE Atlas Anchors!

The Baltic Sea Cable cuts analysis was possible because a sufficient number of RIPE Atlas Anchors was deployed in the region (on both sides of the cables).

We consider 5 RIPE Atlas Anchors in 3 cities and 3 networks will give enough diversity.

Check out this page to see if your country needs more anchors for this type of measurement:

https://sg-pub.ripe.net/emile/tmp/cc2a nchor.csv

Network Requirements:

- Public, native IPv4 & IPv6
- Static, unfiltered IPs (no firewall)
- Same-prefix IPv4/IPv6 gateway or link-local IPv6
- Up to 10 Mbps bandwidth (typically less)

Virtual Machine Specifications

- x86 64-v2+ CPU
- 4 GB of RAM
- 50 GB of Disk Storage

Summary

- **Problem**: Slow DNS response times frustrate internet users
- Cause: High latency due to inefficient routing, with traffic often travel not locally
- Solution:
 - Keep DNS traffic local by hosting more AuthDNS (anycasted DNS servers)
 - Host more RIPE Atlas (anchor) in diverse location to provide real time view on the field
- Benefit: Local DNS reduces latency, improve user experience, Share the load during DDOS attack and enhances security by reducing paths lengths and hijack risks
- **Tools**: Use RIPE Atlas for measuring DNS latency and assessing route inefficiencies.

Sources

- RIPE Atlas Measurement Result: https://atlas.ripe.net/measurements/81446294/
- RIS How far is Internet from our infrastructure: https://observablehq.com/@emileaben/what-peers-would-decrease-as-distance-to-ris-most
- Baltic Cable Cut: <u>https://labs.ripe.net/author/emileaben/does-the-internet-route-around-damage-baltic-sea-cable-cuts/</u>
- AuthDNS analysis:
 https://labs.ripe.net/author/anandb/reaching-authdns-a-ripe-atlas-analysis-by-region/

Questions & Comments

Lia Hestina <u>Ihestina @ ripe.net</u> atlas@ripe.net

THANK YOU!

AS path from AuthDNS side

AS-path from Guam IX AuthDNS node to Atlas Anchor #7009

```
ns1.gu-gum.authdns.ripe.net# show ip bgp 45.94.14.204
BGP routing table entry for 45.94.14.0/24, version 63919178
Paths: (1 available, best #1, table default)
Not advertised to any peer
152735 7131 701 3257 8895 8895 208520, (aggregated by 208520 45.94.12.1)
103.142.153.1 from 103.142.153.1 (103.142.152.254)
Origin IGP, valid, external, atomic-aggregate, best (First path received)
Community: 65000:7131
Last update: Wed Nov 20 13:47:46 2024
```