The Internet – By the numbers

What are we doing? Dave Phelan - APNIC

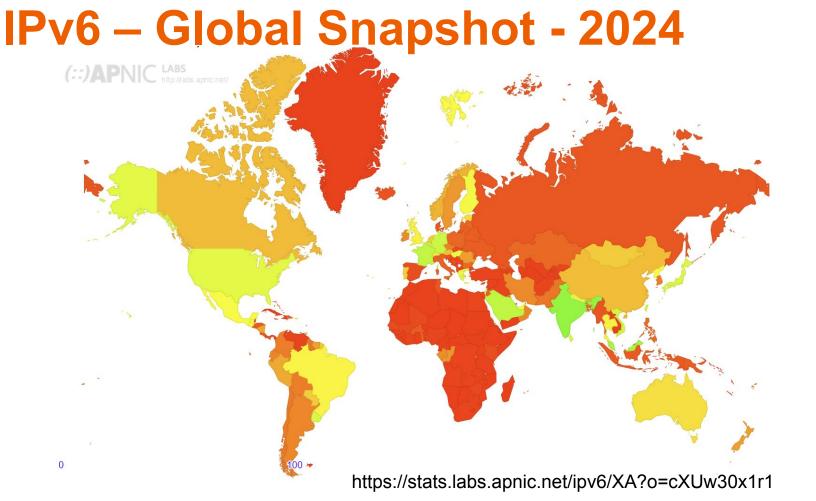
Who Am I?

- Dave Phelan
 - Network and Infrastructure engineer for a LONG time
 - Trainer at APNIC
 - Parent to 2 Human children and 3 Fur Children
 - Likes Cat memes

What are we going to talk about?

- Numbers Numbers Numbers!!!
- IPv6 Stats
 - What are we doing and why we need to do better
- RPKI Stats
 - What and why this important
- Security Stats
 - How many doors are open?
 - How does this affect me (and the rest of the internet)

Why do we care about the numbers?

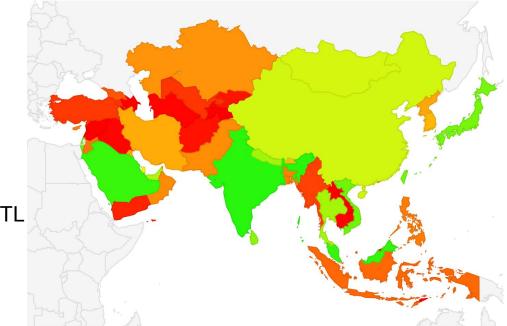

- We can use this as a benchmark
 - How are we performing
 - Network to Network
 - Economy to Economy
 - Region to Region
- What do we need to "fix"
 - Are we doing all we can within our region (see Benchmarks Above)
- Can we do better
 - For our Networks and our Users

- Data for this presentation have come from numerous sources
 - https://stats.labs.apnic.net
 - https://radar.cloudflare.com
 - https://shodan.io
 - My own collection of stats

IPv6 – Global Snapshot - 2025

https://stats.labs.apnic.net/ipv6/XA?o=cXUw30x1r1

IPv6 – Global Snapshot

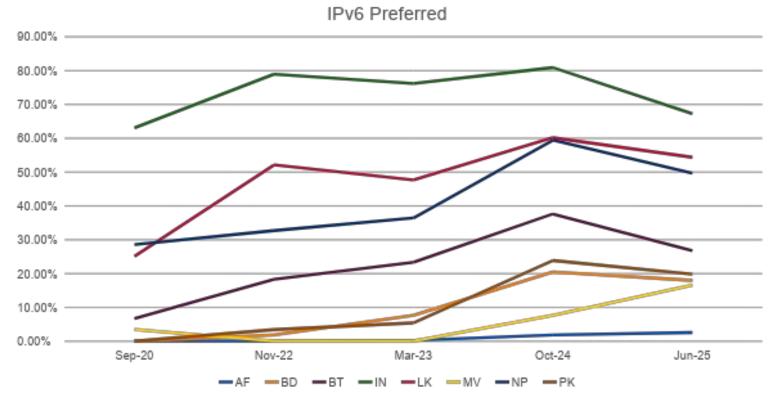

- Global Preference 38% (2024 38%)
- Asia 43.4% (2024 43.14%)
- North America 46.8% (2024 53%)
- South America 38.6% (2024 36%)
- Europe 31.1% (2024 30%)
- Africa 3.8% (2024 2.4%)
- Oceania 35.4% (2024 35.8%)

https://stats.labs.apnic.net/ipv6/XA?o=cXUw30x1r1

IPv6 – Asia Sub-Region

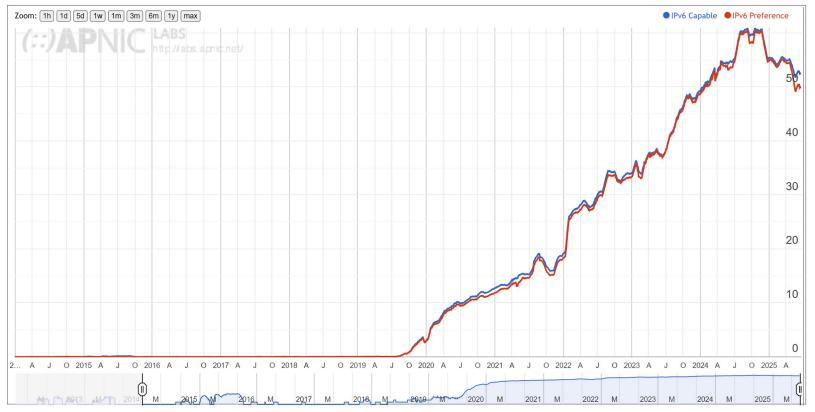
- 3 Sub-regions
 - 57.7% South Asia
 - IN,LK,NP,BT,PK,BD,AF,MV
 - 45.2% East Asia
 - TW, JP, MN, CN, MO, KR, HK, KP
 - 31.2% South-East Asia
 - MY,VN,TH,SG,PH,ID,MM,LA,BN,KH,TL

https://stats.labs.apnic.net/ipv6/XD?o=cXAw30x1r1


IPv6 – South Asia Sub-Region

CC	Country	2020-09	2022-11	202303	202411	202506
AF	Afghanistan	0.11%	0.06%	0.23%	1.85%	2.60%
BD	Bangladesh	0.03%	1.87%	7.68%	20.49%	17.99%
BT	Bhutan	6.72%	18.35%	23.35%	37.65%	26.77%
IN	India	63.07%	78.96%	76.19%	80.91%	67.23%
LK	Sri Lanka	25.10%	52.14%	47.67%	60.19%	54.38%
MV	Maldives	3.51%	0.08%	0.07%	7.67%	16.62%
NP	Nepal	28.60%	32.71%	36.44%	59.43%	49.70%
PK	Pakistan	0.03%	3.44%	5.44%	23.87%	19.82%

https://stats.labs.apnic.net/ipv6/XD?o=cXAw30x1r1



IPv6 – South Asia Sub-Region

https://stats.labs.apnic.net/ipv6/XD?o=cXAw30x1r1

IPv6 – Nepal

https://stats.labs.apnic.net/ipv6/NP?o=cXTw30x1r1

IPv6 – Nepal

Zoom: 1h 1d 5d 1w 1m 3m 6m 1y max

- What are we looking at?
 - Is IPv6 REALLY going backwards?
 - Yes..and No
 - BUT
 - Out of Approx 103 ASN
 - 7 Are over 50% IPv6 Preferred
 - 6 are have a good QTY of Eyeballs
 - 12 between 10%-50%
 - 76 less than 1%

https://stats.labs.apnic.net/ipv6/AS17501?c=NP&p=1&v=1&w=30&x=1

IPv6 Canable IPv6 Preference

Challenges

IPv6 Challenges

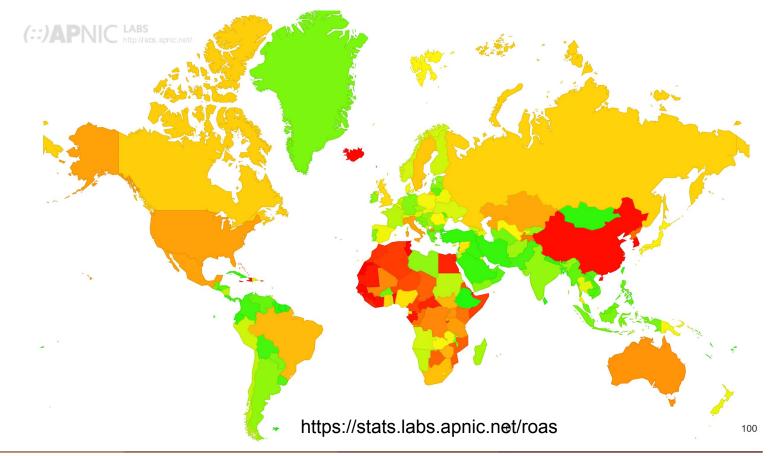
- End user acceptance
 - Residential and Mobile
 - Business and Enterprise
- Networks not ready
 - Older equipment
 - Software (Billing/LOB)
 - Additional Licencing cost(especially Mobile)
- People
 - Staff are not adequately trained
 - Current Tertiary/Industry training rarely addresses IPv6(Pun Intended)
 - Misconception on use
 - Lack of ability to adequately address plan
 - Management not willing make changes

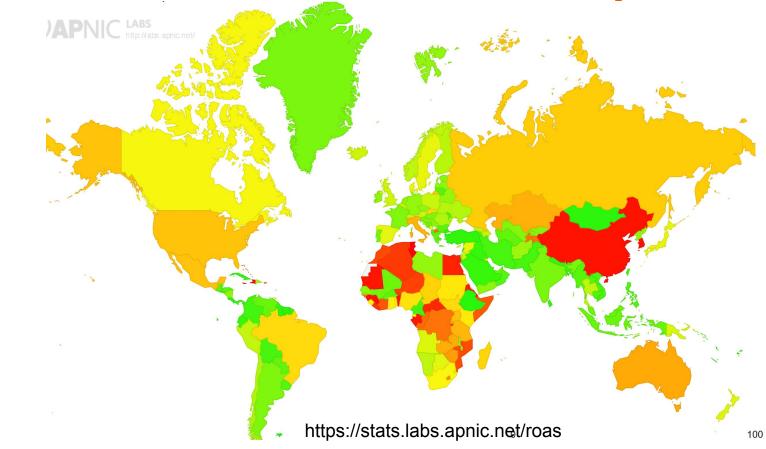
Why Deploy IPv6?

IPv6 Deployment

- Cost
 - IPv4 Address space ~US\$40-50 Per IP
 - US\$12,800 /24
 - Hardware
 - CGNAT is not free
- The world is changing
 - 3 x increase/5 years
 - Hyperscalers are catching up
 - CDN Providers are ready for your IPv6 Packets
 - IPv6 Tipped over the 50% mark in Asia this year

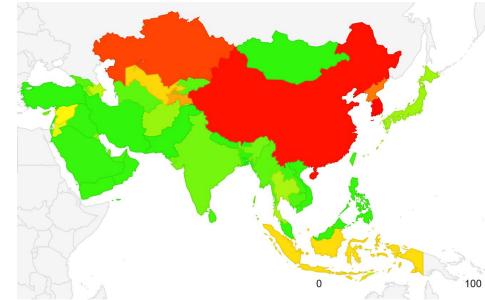
IPv6 Deployment


- Stop saying "I'll do it tomorrow"
 - We have been saying that for 25 years
- Networks are not going to get simpler
- Grants Are available
 - <u>https://isif.asia/infrastructure-ipv6/</u>
 - US\$30-250K
 - Open to all Industry types
- Need practical help?
 - Training: https://academy.apnic.net/
 - TA: https://academy.apnic.net/en/technical-assistance



RPKI ROA – 2024 Global Snapshot

RPKI ROA – 2025 Global Snapshot

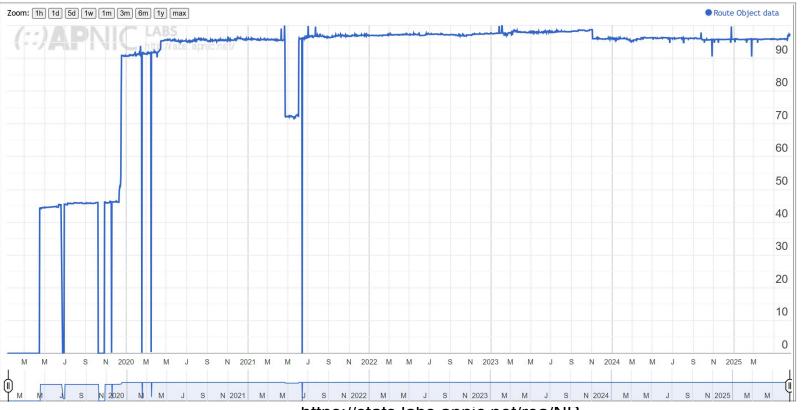

RPKI ROA – Global Snapshot

- Global IPv4 Signed 54% (2024 47.8%)
- Asia 62.1% (2024 57.9%)
- North America 43.2 (2024 34.6%)
- South America 58.9 (2024 54.2%)
- Europe 61.4% (2024 53.7%)
- Africa 36.5% (2024 29.7%)
- Oceania 71.1% (2024 69.4%)

RPKI ROA – Asia Subregion

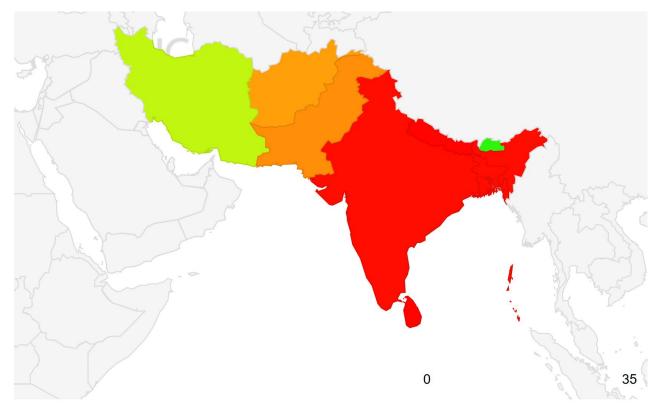
- 3 Sub-regions
 - 88.8% South Asia
 - IN,LK,NP,BT,PK,BD,AF,MV
 - 29.7% East Asia
 - TW, JP, MN, CN, MO, KR, HK, KP
 - 83.3% South-East Asia
 - MY,VN,TH,SG,PH,ID,MM,LA,BN,KH,TL

https://stats.labs.apnic.net/roa/XD


RPKI ROA – South Asia Subregion

Code	Region	V4 Valid	Рс	V4 Invalid	Рс	V4 Unknwn	Рс	V4 Total Addrs	РоТ
AF	Afghanistan	111360	73.4%	768	0.5%	39680	26.1%	151808	0.28%
BD	Bangladesh	1866919	98.4%	4441	0.2%	26368	1.4%	1897728	3.51%
BT	Bhutan	44544	98.3%	0	0.0%	768	1.7%	45312	0.08%
IN	India	38537323	85.0%	167829	0.4%	6616577	14.6%	45321729	83.94%
LK	Sri Lanka	538624	91.2%	256	0.0%	51456	8.7%	590336	1.09%
MV	Maldives	93184	98.6%	0	0.0%	1280	1.4%	94464	0.17%
NP	Nepal	569088	97.4%	0	0.0%	15104	2.6%	584192	1.08%
PK	Pakistan	5160654	97.3%	6963	0.1%	138496	2.6%	5306113	9.83%

https://stats.labs.apnic.net/roa/NP



RPKI ROA – Nepal

https://stats.labs.apnic.net/roa/NP

RPKI ROV – South Asia

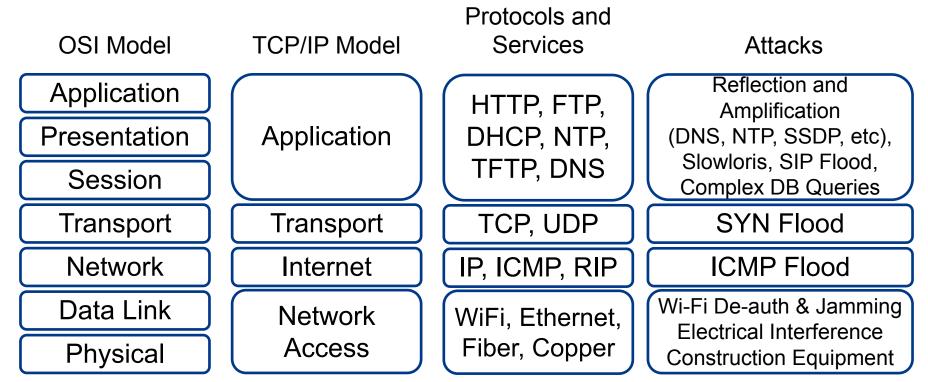
https://stats.labs.apnic.net/rpki/XU?o=cXDw7v0p1x0l1

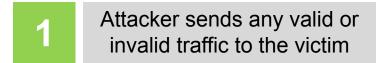
RPKI ROV – South-East Asia

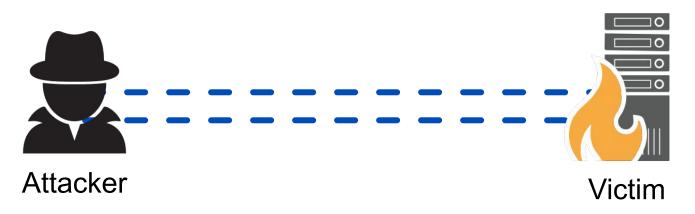
Code	Region	RPKI Validates	
AF	Afghanistan	11.38%	
BD	Bangladesh	0.77%	
BT	Bhutan	34.49%	
IN	India	0.95%	
LK	Sri Lanka	0.32%	
MV	Maldives	0.28%	
NP	Nepal	0.38%	
PK	Pakistan	10.14%	

https://stats.labs.apnic.net/rpki/XU?o=cXDw7v0p1x0l1

RPKI – What do I need to do

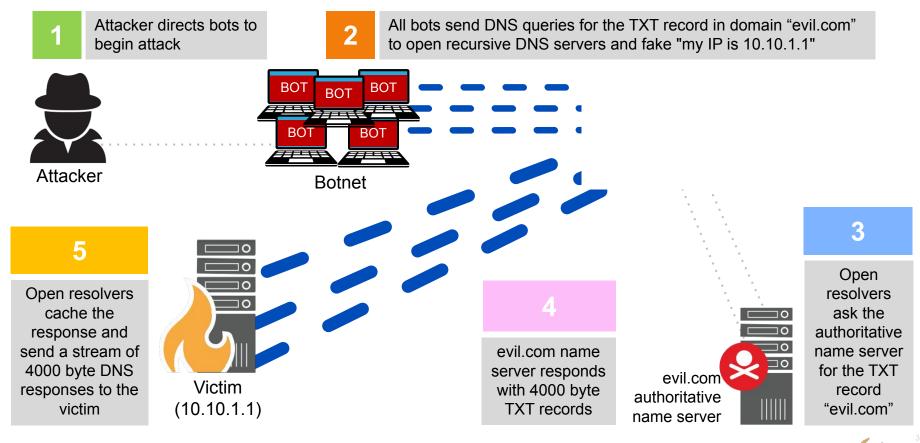

- ROA
 - Sign your Routes (APNIC Portal)
 - Make sure your ROA's Match your BGP Routing
 - Check with routeviews/bgp.tools etc
- ROV
 - Full Routing Table
 - Attend some RPKI Training
 - Setup A Validator and start dropping invalid routes
 - Default/Partial Feed
 - Encourage Up-streams to Drop Invalids.


DoS by Layers



* Colour animated slide


Simple DoS



Simple DDoS

Reflected and Amplified DDoS

Reflection and Amplification

- What makes for good reflection?
 - UDP
 - Spoofable / forged source IP addresses
 - Connectionless (no 3-way handshake)
- What makes for good amplification?
 - Small command results in a larger reply
 - This creates a Bandwidth Amplification Factor (BAF)
 - Reply Length / Request Length = BAF
 - Example: 3223 bytes / 64 bytes = BAF of 50.4
 - Chart on next slide created with data from https://www.us-cert.gov/ncas/alerts/TA14-017A

Amplification Factors

Protocol	Bandwidth Amplification Factor	Protocol	Bandwidth Amplification Factor
Multicast DNS (mDNS)	2-10	LDAP	46 to 55
BitTorrent	3.8	TFTP	60
NetBIOS	3.8	Quake Network Protocol	63.9
Steam Protocol	5.5	RIPv1	131.24
SNMPv2	6.3	QOTD	140.3
Portmap (RPCbind)	7 to 28	CHARGEN	358.8
DNS	28 to 54	NTP	556.9
SSDP	30.8	Memcached	up to 51,000

So why are you telling me this?

- Operators Complain about DoS/DDoS
- Do the minimum to ensure they are not contributing

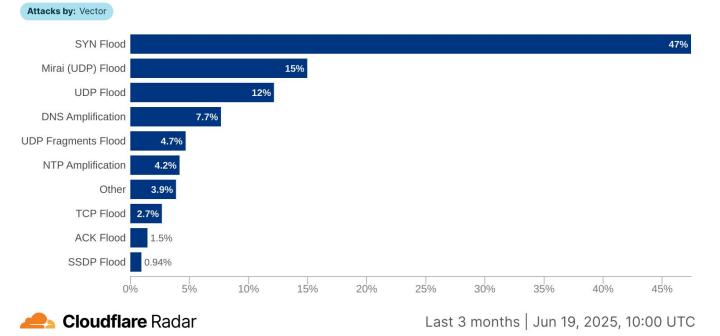
- But How bad is it really?
 - (Hint: It's not good....)

Global Numbers

- Most data sourced from
 - Cloudflare Radar
 - Shodan.io

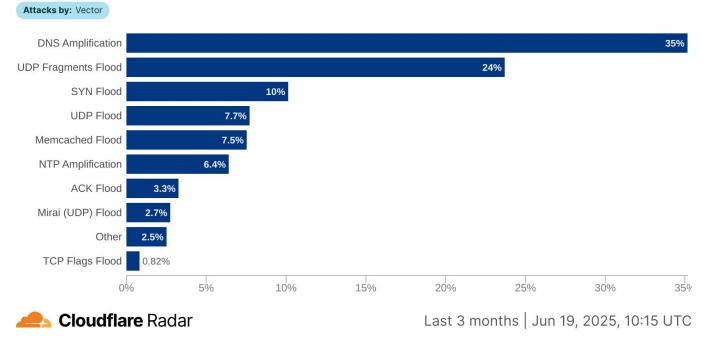
Top 5 Countries DDoS Sources

APRIL 2024	July 2024	June 2025
USA – 22.6%	USA – 18.8%	USA - 20.1%
Germany – 6.5%	Germany – 8.45%	Hong Kong - 6.7%
China - 5.5%	China = 7.49	Brazil - 4.8%
Indonesia – 4.7%	Pakistan – 5.9%	Japan - 4.6%
Brazil – 4.3%	UK – 4.5%	Germany 4.2%


https://radar.cloudflare.com/security-and-attacks

Global Numbers

Network layer attack distribution by characteristic worldwide


nttps://radar.cloudflare.com/security-and-attacks

Network layer attack distribution by characteristic in Nepal

Distribution of network layer attacks

https://radar.cloudflare.com/security-and-attacks/np?dateRange=12w

Nepal

Targets

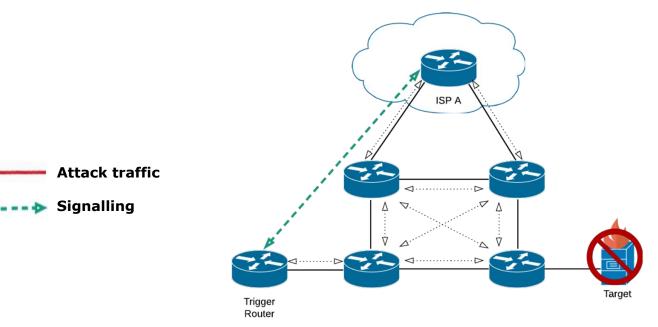
https://radar.cloudflare.com/security-and-attacks/id?dateRange=12w

Indonesia

• Open Ports

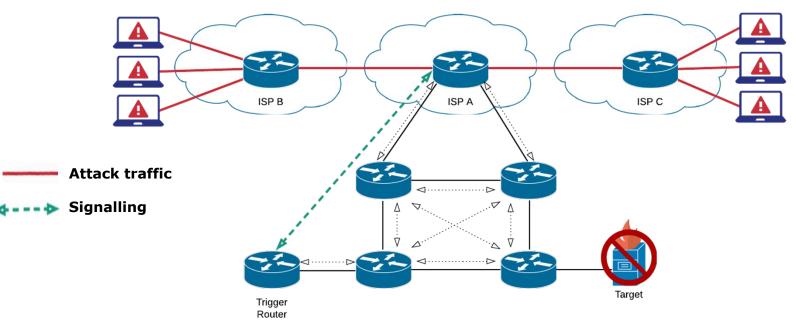
DNS	934
NTP	4,151
SSDP	9
MemcacheD	11
Telnet	830
SNMP	889
Winbox	3,117

https://www.shodan.io/search?query=country%3Anp

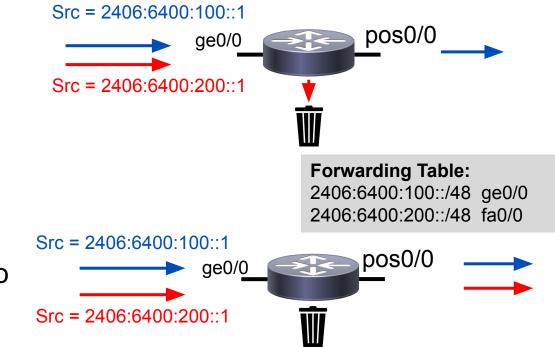


- Protect your services from attack
 - Anycast
 - IPS / DDoS protection
 - Overall network architecture
- Protect your services from attacking others
 - Rate-limiting
 - BCP38 (outbound filtering) source address validation
 - Securely configured DNS, NTP and SNMP servers
 - No open resolvers!

Only allow owned or authorised IP addresses to connect



- Remote Triggered Black Hole (RTBH) filtering
 - With your ISP



- Remote Triggered Black Hole (RTBH) filtering
 - With your ISP

- uRPF
 - Strict: verifies both source address and incoming interface with entries in the forwarding table

 Loose: verifies existence of route to source address



- Source Remote Triggered Black Hole (sRTBH) filtering
 - RTBH with uRPF (Unicast Reverse Path Forwarding)
 - RFC5635
 - Basic Operation
 - Setup a RTBH Sinkhole (routing to a Null Interface)
 - Enable uRPF in loose mode
 - Create an appropriate community to NH traffic to your Sinkhole
 - When a source is identified
 - Tag with appropriate community to send to the Sink
 - uRPF check will fail (as it is routed to a Null)
 - Traffic Dropped

http://www.cisco.com/web/about/security/intelligence/blackhole.pdf

Questions?

